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MODIS 250-m NDVI and EVI datasets are now regularly used to classify regional-scale agricultural land-use
practices in many different regions of the globe, especially in the state of Mato Grosso, Brazil, where rapid
land-use change due to agricultural development has attracted considerable interest from researchers and
policy makers. Variation exists in which MODIS datasets are used, how they are processed for analysis, and
what ground reference data are used. Moreover, various land-use/land-cover classes are ultimately resolved,
and as yet, crop-specific classifications (e.g. soy-corn vs. soy—cotton double crop) have not been reported in

Keywords:
Br;/zil the literature, favoring instead generalized classes such as single vs. double crop. The objective of this study is
Cotton to present a rigorous multiyear evaluation of the applicability of time-series MODIS 250-m VI data for crop

classification in Mato Grosso, Brazil. This study shows progress toward more refined crop-specific classifica-
tion, but some grouping of crop classes remains necessary. It employs a farm field polygon-based ground
reference dataset that is unprecedented in spatial and temporal coverage for the state, consisting of 2003
annual field site samples representing 415 unique field sites and five crop years (2005-2009). This allows
for creation of a dataset containing “best-case” or “pure” pixels, which we used to test class separability in
a multiyear cross validation framework applied to boosted decision tree classifiers trained on MODIS data
subjected to different pre-processing treatments. Reflecting the agricultural landscape of Mato Grosso as a
whole, cropping practices represented in the ground reference dataset largely involved soybeans, and soy-based
classes (primarily double crop ‘soy-commercial’ and single crop ‘soy-cover’) dominated the analysis along with
cotton and pasture. With respect to the MODIS data treatments, the best results were obtained using date-of-
acquisition interpolation of the 16-day composite VI time series and outlier point screening, for which five-year
out-of-sample accuracies were consistently near or above 80% and Kappa values were above 0.60. It is evident
that while much additional research is required to fully and reliably differentiate more specific crop classes,
particular groupings of cropping strategies are separable and useful for a number of applications, including studies
of agricultural intensification and extensification in this region of the world.
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Decision Tree
Land Cover
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1. Introduction

For over a decade, MODIS datasets have been used for regional
scale studies of agricultural landscapes. This is especially evident in
studies in the Brazilian Amazon. Researchers have taken advantage
of MODIS's high-temporal, moderate-spatial resolution characteristics
to map crop classes at the farm field-level, allowing for the tracking of
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land-use and land-cover change and evaluating the implications for car-
bon biogeochemical cycling (Galford et al., 2010a, 2010b, 2011),
deforestation trends (Anderson et al., 2005; Barona et al., 2010; Clark
et al.,, 2010; DeFries et al., 2008; Morton et al., 2006), cropping frequen-
cy changes (number of crops per year) (Brown, et al., 2007a; Coutinho
et al,, 2011; Epiphanio et al., 2010; Galford et al., 2008; Jasinski et al.,
2005; Martinelli et al., 2010), and effectiveness of agri-environmental
governance systems (Rudorff et al, 2011). There seems to be little
doubt that MODIS data are useful for these exercises, and with each pass-
ing year the possibility increases of completing studies of inter-annual
changes over longer periods of time.

There is substantial variation in how researchers have used MODIS
data for the purposes of classification and subsequent analysis of inter-
annual change. The raw datasets may range in pixel size (250 m to
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1 km), in the vegetation index (VI) used (NDVI vs. EVI), in data prepa-
ration and pre-processing (e.g. smoothing, filtering, interpolation),
and in modeling method (e.g. maximum likelihood, decision trees).
Moreover, the field data used to train classification models range from
rapid field surveys along roads (Epiphanio et al., 2010; Morton et al.,
2005, 2006), examination of detailed farm records in particular regions
(Galford et al., 2008), interviews of farmers (Arvor et al., 2008; Brown et
al., 2007a; Jonathan et al., 2008), and visual interpretation of high reso-
lution imagery (Clark et al, 2010). The ways data are processed for
analysis are even more diverse, with most aiming to reduce noise in
the data caused by atmospheric interference, cloud cover, sensor issues,
or inaccuracies of field data collection. Many studies transform or other-
wise smooth datasets with the intent of improving resulting classifica-
tion accuracies (e.g. Galford et al., 2008).

With the continued stream of data beyond the projected years of
the MODIS Terra and Aqua satellite platforms - they were originally
designed to last 6 years when first launched in 1999 and 2002,
respectively - and the recent launch of the NPOESS Preparatory Pro-
ject (NPP) and eventual launch of the Joint Polar Satellite System 1
(JPSS-1), it is clear that satellite-based land change studies will rely
on time-series analysis for many years to come. With the increasing
use of these data to support market-driven efforts for environmental
protection and climate change mitigation (e.g. Reducing Emissions from
Deforestation and Forest Degradation (REDD), the Amazon Soy Moratori-
um, payment programs for ecological services), researchers have an
important role to play in ensuring that land-use/land-cover (LULC)
classifications are as accurate as possible and produced at the lowest
cost (DeFries et al., 2008). Researchers must also be assured that field
data are collected in a standardized fashion, ideally covering several
years in order to assess annual variability and to allow rigorous out-
year, out-of-sample validation that leads to the most robust analysis of,
and conclusions made about, land change in Brazil's rapidly developing
agricultural landscape.

While numerous authors cited above have tested the suitability of
MODIS for their purposes (including the present authors), the objec-
tive of this study is to present a uniquely rigorous multiyear evalua-
tion of the applicability of the time-series MODIS 250 m NDVI and
EVI datasets for crop classification in Mato Grosso, Brazil. It is based
on the pioneering work of Wardlow et al. (2007), which tested sepa-
rability of crop classes in the state of Kansas based on a farm-field
polygon dataset, allowing for the selection of what can be termed
“best-case” or “pure” pixels from the polygons for analysis. The present
study's ground reference data are unprecedented in their spatial and
temporal coverage for Mato Grosso, including 415 farm field
polygons across the state's main growing regions and data from 5
crop years (2005-2009). The present study assesses the separability
of VI values for the crop classes from the field data, and it provides an
empirically justified grouping of classes for the purposes of eventual
map classification. The study also reports the level of classification
accuracies potentially achievable under ideal circumstances when
mapping agriculture in Mato Grosso using time-series MODIS VI
data and boosted decision tree models.

2. Study area

All of the field data for this study come from the state of Mato
Grosso, Brazil, a major center of mechanized agricultural production
within Brazil's Legal Amazon, a bio-administrative unit (Fig. 1). Mato
Grosso covers approximately 900,000 km? and is bordered by Bolivia
to the southwest. The southern part of the state is a tropical wetland
known as the Pantanal (61,726 km?). In the north are the humid forests
of Amazonia (481,129 km?). The central part of the state is dominated
by vast tropical savannas known as cerrado (360,008 km?). The region's
climate (Képpen Aw) is hot, semi-humid to humid, with pronounced
seasonality marked by a dry winter season from May through October.
The annual rainfall ranges from 1300 to 2300 mm. Many of the state's
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Fig. 1. Study area in Mato Grosso, Brazil. (Biome source map: IBGE).
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soils, especially in the cerrado region, are old, deep, and naturally nutri-
ent poor. Due to inputs of adequate fertilizer and lime, new breeds of
crops (especially soybeans), and favorable world markets, Mato Grosso
has come to be called a major “breadbasket” in a country that is quickly
becoming an agricultural super-power. Of the Brazilian states, Mato
Grosso leads in soybean production and is second in corn production.
Mato Grosso is also a major cotton producing state, accounting for
approximately half of Brazil's total production. From 2000 to 2005,
land area planted with soybeans, the state's principal crop, increased
at an average rate of 19.4% per year (Jasinski et al., 2005). Between
1990 and 2010, total planted area in Mato Grosso increased by a factor
of 386% (from 2.43 million to 9.38 million ha), with the majority of this
expansion taking place in the cerrado biome (IBGE, 2011). By 2000,
double cropping soy with soy led in part to the development and spread
of soybean rust. To alleviate this problem, second crop (safrinha) corn
was introduced, and soy followed by second crop corn has become
the dominant double cropping practice. In recent years, other safrinha
crops such as sorghum and sunflowers have become popular as well
(Soybean & Corn Advisor, Inc., 2011). The major crops in the region
include soybeans, corn, and cotton, with soybeans accounting for nearly
70% of the total planted area during 2005-2009 (IBGE, 2011).

The field data for the study were collected within an area extending
from (59° 25’ 14" W, 14° 2 39" S) [lower left] to (54° 25’ 19” W, 11° 42/
16” S) [upper right], from the following 14 municipalities in the most
intensely cropped region of central Mato Grosso: Brasnorte, Campo
Novo do Parecis, Campos de Jilio, Diamantino, Ipiranga do Norte, Lucas
do Rio Verde, Nova Mutum, Santa Carmem, Sapezal, Sinop, Sorriso,
Tapurah, Unido do Sul, and Vera. On average across the 2005-2009
crop years, the total cropland area in these municipalities accounted
for 43.5% of the total agricultural area in the state (IBGE, 2011). Most of
these areas are located along the BR-163 highway that extends from
Mato Grosso's capital, Cuiaba, north to Santarém, Pard on the Amazon
River. A mild southeast to northwest precipitation gradient exists across
the study area, with average annual precipitation ranging from 1750 mm
to 1925 mm.

3. Data and methods

Two datasets were essential to this study: field data containing
5 years of agricultural land use records for hundreds of fields in Mato
Grosso, and corresponding MODIS time-series satellite vegetation
index data. Boosted decision tree models were used for the several dif-
ferent classifications that were examined. Distributional similarities
between crop classes with respect to their spectral profiles resulted in
the examination of three different classification schemes. In an effort
to maximize model accuracy, three levels of signal processing were
considered along with three levels of data filtering.

3.1. MODIS data

Sixteen-day composite Terra MODIS 250-m NDVI and EVI data
from the MOD13Q1 Vegetation Indices product line (Collection 5)
were used for this study. These data were obtained from the United
States Geological Survey's Land Processes Distributed Active Archive
Center (LP DAAC). One MODIS tile (h12v10) was required, which
covered all of the field sites. Because the Mato Grosso crop calendar
runs from composite period 14 (Jul 28-Aug 12; season start) to
composite period 13 (Jul 12-Jul 27; season end), the analysis dataset
spanned five crop years (2004 period 14-2009 period 13) and consisted
of 115 scenes (5 years=23 scenes/year). Corresponding acquisition
date information also was extracted from the MOD13Q1 data files,
giving the specific day of the 16-day composite interval from which
each MODIS pixel VI value was obtained (the same date applies to
both NDVI and EVI). MODIS Quality Assurance information was not
used, which simplified processing by avoiding altogether any subjective
decision on how to use those data (i.e., how to drop values out, and

possibly how to replace them). This allowed for analysis of the MODIS
VI data in their most readily available form.

3.2. Field data

In situ data were collected via farmer/farm manager interviews in
September 2009 across a wide swath of central and western Mato
Grosso in central Brazil (Fig. 1). The cropping practices were recorded
for individual field sites (polygons) for the 2005-2009 crop years
(Coutinho et al., 2011). The field-level information was integrated
into a GIS as specific polygons with attribute data that were used to
explore the MODIS time-series data. Interviews proceeded after
obtaining oral consent to participate in the research project, following
the protocol outlined by Institutional Review Board Guidelines of the
University of Kansas. A total of 40 farmers or farm managers were
interviewed as research participants.

To obtain field data, authors Coutinho and Victoria presented par-
ticipants with a Landsat TM image at a scale of 1:100,000 containing
the areas they were responsible for farming. Each field, or talhdo, in-
dicated by the participant was a polygon in which cropping practices
and management were purported to be homogenous throughout a
given agricultural year (roughly August through July). These fields
were outlined on the paper image with a marker. Fields for the
2008-2009 agricultural year were marked first, followed by fields for
2007-2008 and earlier as time, memory, or record keeping allowed. If
participants expressed doubt about their ability to recognize a field
boundary or report accurate planting and cropping practice informa-
tion, that information was discarded. Each field received a unique iden-
tifier, and for each field the following data were collected for each
agricultural year: type(s) of crop(s) and planting sequence, and (if ap-
plicable) type of fallow (i.e., true fallow or planting a particular cover
crop). Each field outline was then digitized on-screen over a Landsat
TM image using Quantum GIS (http://www.qgis.org/) to create a field
polygon coverage. Approximately 20% of the polygons are within the
humid forest biome, and 80% are within the cerrado. For simplicity,
we refer to each crop year using the year in which it ends, so that the
2008-2009 crop year is now just referred to as 2009, and so on.

The resulting field polygon layer contained 415 polygons, each
with one to five years of LULC information. Of 2075 potential annual
field site samples, 72 records were absent, resulting in a total of
2003 annual field site samples. The fields range in size from 23 to
2793 ha with a median field size of 176 ha. The field polygons were
converted to raster format corresponding with the MODIS pixel
grid, and border pixels were removed so that only pixels completely
interior to the field boundaries were retained. Following Wardlow
et al. (2007), a single, high quality, centrally located 250-m MODIS
pixel was manually selected from each polygon to represent that
field site in the dataset for analysis. This approach was taken because
our main objective was to assess potential class separability. As such,
this method minimizes the influence of mixed pixels on the analysis
(i.e., maximizes the “purity” of the spectral signatures) and ensures
that each field site has equal representation in the analyzed dataset.
The quality was assessed by examining the NDVI and EVI profiles of
pixels centrally located in the field. Each centrally located pixel was
compared to its surrounding in-field neighbors (up to 8 pixels), and
the pixel with the most visual continuity with its neighbors was se-
lected. In some of the larger, more convex fields, multiple pixels
were available that met our selection criteria. Even in these instances,
a single pixel was selected to maintain consistency of sampling and
consistency with Wardlow et al. (2007). In instances where fields
were irregularly shaped, this process was applied to the broadest,
most convex part of the field. In many cases, the centroid pixel was
used when found to be centrally located and of high quality. After
pixel selection, the corresponding pixel-level time-series NDVI, EVI,
and date-of-acquisition data were extracted from the MODIS time-
series stacks to create the raw VI analysis dataset.
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Nineteen unique classes are represented among the 2003 annual
field site samples (Table 1). Imposing a minimum sample size of
30 immediately eliminated seven classes (amounting to 104 total
samples) from the analysis (four of these classes - clearing, forest,
cerrado, and reforest - would have been excluded anyway because
the focus of this research is on agricultural land cover). One additional
class (rice), which had the next smallest sample size at 36, was also
eliminated from consideration. Rice is frequently opportunistically
planted as a temporary transition crop on deforested land to help
condition the ground for future soybean plantings. Consequently,
rice phenology in the study area exhibits exceptionally inconsistent
timing and growth, as well as irregular pre-crop VI values depending
on the time of clearing (Brown et al., 2007a). This variability was
reflected in the field site NDVI database, as rice samples demonstrat-
ed the largest aggregated period-by-period coefficient of variation
when averaged across the 23 sixteen-day time periods of the MODIS
data. Following these exclusions, 11 classes remained, amounting to
1863 annual field site samples (Table 1) and approximately 120,000 ha
of agricultural land represented annually (Table 2). On average across
the five study years, the crops represented in these 11 classes accounted
for 91.5% of reported agricultural land area in Mato Grosso (IBGE, 2011).
Fig. 2 shows median profiles and data bands from the six largest classes.

3.3. Decision tree classifiers and model evaluation methods

The commercial decision tree (DT) classifier See5 was used to per-
form the classifications. DTs currently serve as the main classification
models for prominent national and global-scale LULC mapping efforts
such as the USGS NLCD (Homer et al., 2004), the MODIS Land Cover
Type product (MOD12Q1) (Friedl et al., 2002), and the USDA NASS
Cropland Data Layer Program (Boryan et al., 2011). DTs are non-
parametric, hierarchical classifiers that predict class membership by
recursively partitioning data sets into increasingly homogeneous, mu-
tually exclusive subsets via a branched system of data splits (Breiman et
al,, 1984). Key components of DTs are internal nodes (branching points),
terminal nodes (end nodes or leaves), and branches (connections linking
two nodes). At each internal node, the optimal independent variable and
threshold value are identified that result in the best possible data split
based on statistical deviance (Wardlow & Egbert, 2007). Once the DT's

Table 1
Number of field site samples, by year and by crop type. The 11 largest classes were used
for the analysis, accounting for a total of 1863 field site samples.

Crop 2005 2006 2007 2008 2009 Total
Soy-corn?® 101 98 130 151 156 636
Soy-millet® 105 102 86 88 77 458
Soy® 81 101 40 28 36 286
Pasture 22 21 24 22 25 114
Soy-cotton® 24 21 25 12 11 93
Cotton 7 15 9 18 13 62
Soy-sunflower® 6 6 8 14 14 48
Soy-sorghum? 6 6 9 14 10 45
Soy-corn-pasture® 4 2 11 17 8 42
Soy-pasture” 3 2 9 13 14 41
Soy-beans*® 5 5 6 7 15 38
Rice 5 8 8 7 8 36
Corn 3 12 1 7 3 26
Cotton-millet 6 6 6 2 2 22
Soy-rattlepod 1 1 3 4 8 17
Forest 5 3 5 3 1 17
Cerrado 2 2 2 2 1 9
Reforest 1 1 1 1 4 8
Clearing 2 0 2 0 1 5
Total 389 412 385 410 407 2003

2 Soy-Com class in all scenarios.
b Soy-Cov class in all scenarios.
¢ Soy-Com class in 4- and 2-class scenarios.

Table 2

Field site area in hectares, by year.
2005 2006 2007 2008 2009
120,209 114,760 120,541 118,317 120,619

classification structure is established, each observation (pixel) from the
dataset to which the DT is applied is passed through the tree and
assigned to the class of the leaf node into which it falls.

Unconstrained DTs can be constructed large enough to fit any train-
ing dataset to any degree of accuracy when there are no training
samples that have identical predictor values but different dependent
variable values. Consequently, constraints must be imposed to limit
tree size and mitigate overfitting. In See5, this is accomplished through
the use of two parameters, the minimum leaf size and the certainty factor
(CF).

To implement the minimum leaf size, See5 halts splitting when
the optimal split of the training data subset at a parent node results
in at least one child node that contains fewer data points than the
minimum leaf size. When this occurs, that parent node is not split,
and instead becomes a terminal node. The default minimum leaf
size value in See5 is 2 cases. We chose to use this value for all of our
analyses after extensive out-of-sample testing indicated this value
to be optimal for our classification problem. Specifically, we tested
minimum leaf size values of 2, 5, and 10 in a factorial design using
CF values of 0%, 1%, 2%, 5%, 10%, and 25% (results not shown).

The CF dictates a form of error-based pruning, a key feature of DT
development designed to mitigate overfitting and make the tree more
parsimonious, so that the tree's predictive ability is more robust when
applied to unseen data. Use of pruning is common in DT classification
processes for LULC mapping applications (DeFries & Chan, 2000;
Friedl & Brodley, 1997; Friedl et al., 2002; Hansen et al., 1996;
Homer et al., 2004). Pruning involves removing parts of the tree
(splits) that are expected to have a relatively high error rate or con-
tribute little to reducing the deviance in the training data.

In See5, the CF determines statistical confidence limits for the pre-
dicted number of errors across the leaves below a test node and com-
pares this to the predicted number of errors at the test node if it were
a leaf (which is estimated from the observed number of errors at the
test node). If the predicted number of errors at the test node is less
than the sum of the upper limit predicted numbers of errors across
the child nodes, then the leaves are pruned. Consequently, the lower
the CF value, the wider the confidence interval and the more likely
that pruning will occur. After testing multiple CF values, we chose to
use a CF value of 1% because this value exhibited the least overfitting
but also did not underfit the data (which was always the case when
using a CF value of 0%). It is likely that the optimal CF value is between
0% and 1%, but the See5 software only allows integer percentage values
for the CF.

Boosting is another feature of DT modeling that generates several
classifiers (decision trees) rather than a single classifier, in an effort
to improve classification accuracy. In See5, boosting optimizes multi-
ple classifiers using a base classification algorithm in an iterative fash-
ion while systematically varying the training sample to emphasize
difficult-to-classify cases from previous iterations. The final ‘boosted’
classification output is produced by a weighted voting scheme across
the multiple classifiers (RuleQuest Research, 2012). Any number of
iterations can be performed, but traditionally 10 iterations have
been used for most previous LULC mapping efforts where boosting
was employed (DeFries & Chan, 2000; Friedl et al., 1999; Mclver &
Friedl, 2001; Wardlow & Egbert, 2007). Following these studies, we
used boosting with 10 iterations for all of our DT analyses.

Three different approaches to the DT modeling process were explored
to gain a better understanding of DT classification error. Specifically, two
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out-of-sample cross validation (CV) approaches and one in-sample ap-
proach were evaluated.

For the first (and most rigorous) out-of-sample method (denoted
CVYR), data from one of the five years were withheld from modeling,
and the model generated using the remaining four years of data was
subsequently applied to the withheld year to determine classification
accuracy. This was repeated with each of the five study years acting as
the withheld year, and the results were aggregated to obtain an over-
all accuracy estimate. As with any CV-based model error estimation
exercise, one should be mindful of potential “data framing” effects that
occur when the withheld data are not independent of the model training
data, imparting a favorable bias to the results. Determining hold-out sets
based on crop year (which are largely independent of one another)
should mitigate this bias.

For the second out-of-sample method (denoted CV20), the data
were pooled across all five years and were split using a stratified
(by class) random sample with 80% allocated for training and 20%
for validation. These data splits were created independent of sample
year. The 80% subsets from each class were merged and used for
model construction, and the 20% subsets were merged and used for
model evaluation. Thirty independent classification runs were performed
using thirty different stratified random draws of training and validation
data, and validation accuracies for the thirty runs were averaged to obtain
a robust overall accuracy estimate reflective of this model evaluation
approach.

Though CV20 is an out-of-sample evaluation method with roughly
the same holdout set size as CVYR, it is not as rigorous as CVYR. This is
because data samples from different years have greater independence
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from one another than samples taken from the same year due to sim-
ilarities in phenology (expressed through VI values) caused by large-
scale spatial similarities in single-year weather patterns that heavily
influence crop management and growth. Comparing results from
CVYR and CV20 helps expose bias in out-of-sample validation methods
such as CV20 when applied to multiyear datasets, if the intent is to
develop a model that can be applied to data observations from years
that are not part of the study.

For the in-sample method (denoted INSAMP), all samples were used
for both model construction and model evaluation. This approach is
assured to produce biased results that exaggerate a model's ability to
make predictions using another dataset. By comparing INSAMP accura-
cies to those observed using the CV approaches, the magnitude of this
bias can be examined to better understand the degree to which the
model is overfitting the data.

3.4. Combining classes for DT modeling

Phenological similarities in MODIS VI profiles between different
crop types can preclude clean separation during classifier development.
In this situation, combining similar classes is necessary to produce ro-
bust classification models (Arvor et al., 2008; Brown et al., 2007a).
Comparing VI profiles from the 11 classes in the analysis dataset using
correlation and Jeffries—-Matusita (JM) distance (Richards & Jia, 1999;
results not shown), two logical groupings became apparent, which we
refer to as ‘soy-cover’ and ‘soy-commercial’. These two super-classes
accounted for eight of the 11 cropping practices. The ‘soy-cover’
(Soy-Cov) class subsumed three original classes: soy, soy-millet,
and soy-pasture. For these component classes, soy is the only com-
mercial crop (occasionally safrinha millet is harvested, but millet is
predominantly used as a cover crop in this setting). Five classes
comprised the ‘soy-commercial’ (Soy-Com) class: soy-corn, soy-
sunflower, soy-sorghum, soy-corn-pasture, and soy-beans. All of
these component classes have soy followed by a second commercial
crop. The remaining three classes (cotton, pasture, soy-cotton)
were assessed to be sufficiently distributionally distinct to warrant
individual representation in the reduced class list.

To test the general suitability of this 5-class grouping, we sub-
jected the VI data to K-means clustering, setting the “number of
groups” parameter (K) to five. The purpose was to examine to what
degree the five data clusters resulting from this unsupervised classifi-
cation reflected the 5-class specification defined above. The K-means
algorithm used random seeding for initial clustering, so 30 replicates
were evaluated. Results from the trial with the lowest sum of squared
distances between individual samples and their corresponding clus-
ter centers fairly well corroborate our 5-class scheme (Table 3).
Each cluster containing at least 20% of the points from a given class
is emphasized in the table. Specifically, we note that Class 1 is roughly
a soy-cover class, Class 2 is a cotton class, Class 3 is a pasture class,
Class 4 is a soy-commercial class, and Class 5 is a combination soy-
commercial/soy-cover class. The most notable exception is that no
exclusive class emerged for soy—cotton, which largely (63%) landed
in Class 4. As a consequence of this observation, in addition to the
5-class specification, we also evaluate a 4-class specification, whereby
soy-cotton is absorbed into the soy-commercial class (which is ap-
propriate because safrinha cotton is a commercial crop in this case).
As a final test to examine just how well we can distinguish soy-
commercial from soy-cover, we also perform 2-class analyses where-
by we exclude cotton and pasture samples and include soy-cotton in
the soy-commercial class.

3.5. Data treatment variations

All analyses performed using NDVI were repeated using EVL. In total,
nine different data treatments were examined for each VI dataset: three

Table 3
NDVI DOA K-Means clustering results. Emphasized entries indicate more than 20% of a
particular crop sample set was assigned to a particular class.

Crop Class 1 Class 2 Class 3 Class 4 Class 5
Soy-corn 43 10 22 322 239
Soy-millet 204 7 52 36 159
Soy 153 11 22 32 68
Pasture 25 5 75 4 5
Soy-cotton 1 12 7 59 14
Cotton 4 41 1 8 8
Soy-sunflower 8 6 0 11 23
Soy-pasture 13 0 11 4 13
Soy-sorghum 9 0 3 5 28
Soy-corn-pasture 2 0 6 23 11
Soy-beans 4 2 6 18 8

levels of signal processing were considered, with three levels of data
filtering then evaluated for each signal processing level.

The first level of processing (“RAW”) used raw VI values extracted
directly from the 16-day MODIS composite images and stacked in se-
quence to form 16-day time series. The second level of processing
(“DOA”) used 16-day VI time series extracted from linearly interpo-
lated daily data developed from the pixel-level, date-of-acquisition
(DOA) information that accompanied the MODIS composite data. To
create the interpolated VI values, we associated each raw VI value
with its DOA and simulated all missing daily VI values using linear
interpolation between each pair of successive observations. Each
field site was processed individually, because each has its own unique
set of DOA values that is applicable to both NDVI and EVI. The length
of an interpolated span can be 0-30 days, depending on which days
from the two consecutive 16-day intervals that the DOA values
occur (e.g., day 16 in period 1 and day 1 in period 2 leads to 0 interpo-
lated days between those two VI values, whereas day 1 in period 1
and day 16 in period 2 leads to 30 interpolated days). Upon comple-
tion of the daily interpolations, we extracted the VI values at ‘day 8’
from each 16-day composite interval to produce the DOA NDVI and
DOA EVI time series. The third level of processing (“SM-DOA”) was
similar to the second level, except that a flat-bottom smoothing algo-
rithm (Wardlow et al., 2006) was applied to the raw time series prior
to date-of-acquisition interpolation. In this algorithm, each local
minimum VI value is identified in the time series, and its value is in-
creased to the level of its lowest neighboring (i.e., immediately preced-
ing or immediately following) VI value. This smoothing algorithm was
selected because of its simplicity and its emphasis on tampering only
with local minima of VI profiles, which are the most likely location for
substantive data value errors when the data are developed using max-
imum value compositing techniques (which characterizes the 16-day
MODIS VI products). See Fig. 3(a) for an example showing NDVI profiles
from all three processing levels for one cotton field site sample.

The first level of data filtering (“NOFILT”), which involved no filter-
ing, used all of the data. The second (“85/15") and third (“80/20") levels
of filtering used identical filtering procedures but with a different filter
stringency parameter value. The purpose was to remove outliers to
purify the sample and make the results better reflect best-case classifi-
cation scenarios, thereby exposing potential classification accuracies.
First, all of the VI data across the five study years were grouped by
class (which varied across the three different classification schemes
examined), and period-by-period VI values were sorted. For each of
the 23 annual MODIS periods, class-specific VI value percentiles were
empirically determined to identify lower and upper period-specific VI
tail threshold values. For the 85/15 dataset, the 15th and 85th percen-
tiles were determined (likewise, 20th and 80th percentiles were used
for the 80/20 dataset). Each annual spectral profile in a class was exam-
ined to count the number of tail occurrences among the 23 comprising
periods. Finally, any profile with more than half of its VI values (i.e., 12
or more data points) occurring in the appropriate class- and period-
specific distribution tails was excluded from the dataset. To illustrate
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Fig. 3. (a) NDVI profiles for one cotton field site sample, showing variability from the three different levels of signal processing. This sample appeared in all three data sets with
different levels of filtering applied. (b) DOA NDVI 70% data bands for cotton, illustrating the effects of the three different levels of filtering on the spectral profile distribution

from this class.

the effects of filtering on spectral profile distribution, Fig. 3(b) shows
DOA NDVI data bands from all three filtering levels for the cotton class.
By this construction, more profiles were identified as outliers and ex-
cluded from the analysis using the 80/20 percentiles than the 85/15 per-
centiles. In all cases, 2005 saw the most samples drop out, amounting to
a loss of 22% of its points in the 85/15 dataset and 40%-41% of its points
in the 80/20 dataset (Table 4). In the 85/15 dataset, years 2006-2009 lost
similar proportions of data (9%-13%). In the 80/20 dataset, 2006 lost
a greater proportion of its points (31%) than 2007-2009, with these
years experiencing losses ranging from 23% to 26%. The fact that earlier
years tended to lose more points suggests that more of these records
might have been in error, reflecting increasing inaccuracy of farmer
recollections going further back in time. A similar recency effect was ob-
served in Rowley et al. (2007), which involved a survey that asked cattle
ranchers to recall their grazing land productivity from past years.

4. Results and discussion

Averaged across the nine different data treatments (three levels of
VI processing crossed with three levels of data filtering) and applied
to the three different classification schemes (5-class, 4-class, and
2-class), NDVI classification percentage accuracy was 0.1% better
than EVI using the CVYR evaluation method. The 5-year standard
deviation of percent prediction accuracy averaged across the 27 sce-
narios (nine treatments and three classification schemes) was 0.3%
lower using NDVI than EVI. Due to these small overall differences be-
tween NDVI and EVI performance, we present only results using NDVI
in the interest of using the simpler VI.

Table 4
Sample dropout results applying filtering to NDVI DOA data.

Averaged across the three filtering levels and three classification
schemes, the DOA NDVI dataset outperformed the RAW NDVI dataset
by 1.9% and the SM-DOA NDVI dataset by 0.3%. The 5-year standard
deviation of percent prediction accuracy averaged across the nine
scenarios (three filtering levels and three classification schemes)
was 0.7% lower using DOA NDVI compared to RAW NDVI and 0.3%
lower than using SM-DOA NDVI. Thus we further limit the discussion
to include only results obtained using the DOA NDVI dataset.

4.1. Effects of data filtering

As previously described, three different levels of point filtering (in-
cluding no filtering) were applied to the DOA NDVI dataset. In this sec-
tion, we compare accuracy results from the unfiltered (NOFILT) dataset
to the 85/15 and 80/20 filtered datasets using the CVYR evaluation
method.

Tables 5-7 show the 5-class, 4-class, and 2-class confusion matrices,
respectively, from the three filtering levels, along with other accuracy
statistics. In all three classification structures, overall accuracy improved
as filtering became more stringent (5-class: 68.6% (NOFILT) vs. 79.3%
(80/20); 4-class: 71.4% (NOFILT) vs. 80.9% (80/20); 2-class: 78.8%
(NOFILT) vs. 84.3% (80/20)). In the 5-class design, the Kappa value
(estimated using the K statistic; Congalton & Green, 1999) improved
from 0.49 (NOFILT) to 0.66 (80/20). In the 4-class design, Kappa in-
creased from 0.50 to 0.67, and in the 2-class design, Kappa increased
from 0.57 to 0.68. Estimating the variance of K and converting K to a
Z-score (Congalton & Green, 1999), classifications from the three filter-
ing levels were all mutually distinct (0¢<0.01) when 5 classes were

Filter Data year 5-class Dropouts Percent 4-class Dropouts Percent 2-class Dropouts Percent

85/15 2005 284 80 22% 283 81 22% 261 74 22%
2006 342 37 10% 330 49 13% 303 40 12%
2007 324 33 9% 318 39 11% 290 34 10%
2008 341 43 11% 339 45 12% 305 39 11%
2009 332 47 12% 328 51 13% 295 46 13%

80/20 2005 218 146 40% 214 150 41% 199 136 41%
2006 260 119 31% 260 119 31% 238 105 31%
2007 272 85 24% 268 89 25% 248 76 23%
2008 295 89 23% 297 87 23% 265 79 23%
2009 282 97 26% 288 91 24% 258 83 24%
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Table 5
Confusion matrices and accuracy statistics for the 5-class design.
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Reference class

Soy-Com Soy-Cov Soy-Cot Cotton Pasture Total User's Producer's

NOFILT Soy-Com 599 180 48 19 7 853 70% 74%
Soy-Cov 180 569 12 17 41 819 69% 72%
Soy-Cot 16 1 22 3 42 52% 24%
Cotton 4 9 9 22 44 50% 35%
Pasture 10 26 2 1 66 105 63% 58%
Total 809 785 93 62 114 1863 Overall accuracy: 68.6%

Kappa=0.49

85/15 Soy-Com 534 130 36 12 2 714 75% 77%
Soy-Cov 147 547 9 7 39 749 73% 79%
Soy-Cot 13 2 30 3 48 63% 34%
Cotton 2 3 11 32 2 50 64% 58%
Pasture 14 1 1 46 62 74% 52%
Total 696 696 87 55 89 1623 Overall accuracy: 73.3%

Kappa=0.56

80/20 Soy-Com 483 85 30 9 2 609 79% 84%
Soy-Cov 84 468 2 2 30 586 80% 83%
Soy-Cot 6 1 29 2 38 76% 43%
Cotton 2 5 27 1 35 77% 66%
Pasture 3 9 1 1 45 59 76% 58%
Total 576 565 67 41 78 1327 Overall accuracy: 79.3%

Kappa=0.66

used. The same was true for the 4-class design, except that 85/15 and
80/20 were distinct only to the level of a<0.02. In the 2-class design,
only NOFILT and 80/20 were distinct with ac<0.01. 85/15 and 80/20
were distinct to the level of «<0.02, while NOFILT and 85/15 were
found to be indistinct (o> 0.40).

In each classification structure and for each class, User's Accuracy
improved as filtering became more stringent. User's Accuracy indi-
cates the likelihood that a user visiting a site on the ground assigned
to a particular class by the model will find it in that state. The most
substantial gains in the 5-class and 4-class designs occurred in the
cotton class, where User's Accuracy jumped from 50% to 77% and
55% to 89%, respectively, as filtering stringency increased. This gain
is attributable to the fact that a substantial number of cotton samples
had a large, early-season (approximately Nov-Jan) NDVI “hump” that
does not reflect cotton phenology but increases confusion (distribu-
tional overlap) with the other classes, which generally exhibit actual
vegetative growth activity (and thus elevated NDVI) during all or

Table 6
Confusion matrices and accuracy statistics for the 4-class design.

part of this time window (see Fig. 2). The filtering method screened
out many samples exhibiting this anomalous behavior. Considering
that cotton is a later-season crop in Mato Grosso, a likely explanation
for this occurrence of inflated, pre-cotton crop NDVI values is abundant
and prolonged weed growth on the field sites in question prior to
field preparation for cotton planting. Similar problems were found in
Wardlow et al. (2006), where pre-crop weed growth produced NDVIin-
creases that confounded comparisons between crop emergence timing
and green-up onset in the state of Kansas in the U.S.

Producer's Accuracy also generally improved with filtering.
Producer's Accuracy indicates the likelihood that a sample from a par-
ticular ground reference class will be classified correctly by the
model. Values were typically higher than User's Accuracy for the larger
classes and lower than User's Accuracy for the smaller classes. This be-
havior can be expected when (i) training class sizes are severely imbal-
anced, and (ii) overall accuracy is the value to be maximized during
model optimization. Both features characterize the 5-class and 4-class

Reference class

Soy-Com Soy-Cov Cotton Pasture Total User's Producer's
NOFILT Soy-Com 713 210 34 12 969 74% 79%
Soy-Cov 177 545 17 40 779 70% 69%
Cotton 7 3 12 22 55% 19%
Pasture 5 27 61 93 66% 54%
Total 902 785 63 113 1863 Overall accuracy: 71.4%
Kappa=0.50
85/15 Soy-Com 626 143 19 3 791 79% 83%
Soy-Cov 127 536 6 38 707 76% 77%
Cotton 3 3 28 34 82% 51%
Pasture 2 14 2 48 66 73% 54%
Total 758 696 55 89 1598 Overall accuracy: 77.5%
Kappa=0.60
80/20 Soy-Com 541 101 8 3 653 83% 84%
Soy-Cov 97 448 1 23 569 79% 79%
Cotton 3 1 32 36 89% 78%
Pasture 2 15 52 69 75% 67%
Total 643 565 41 78 1327 Overall accuracy: 80.9%

Kappa=0.67
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Table 7
Confusion matrices and accuracy statistics for the 2-class design.

Reference class

Soy-Com Soy-Cov Total User's Producer's
NOFILT Soy-Com 746 201 947 79% 83%
Soy-Cov 156 584 740 79% 74%
Total 902 785 1687 Overall accuracy:
78.8%
Kappa=0.57
85/15 Soy-Com 628 158 786 80% 83%
Soy-Cov 130 538 668 81% 77%
Total 758 696 1454 Overall accuracy:
80.2%
Kappa=0.60
80/20 Soy-Com 560 107 667 84% 87%
Soy-Cov 83 458 541 85% 81%
Total 643 565 1208 Overall accuracy:
84.3%
Kappa=0.68

studies. In this situation, a model often will have more to gain by
expanding the reach of the larger classes at the expense of the smaller
classes. Generally speaking, as the model strives to reduce errors of
omission in the larger classes, this leads to a simultaneous (but neces-
sarily smaller) increase in errors of commission in the larger classes.
This behavior can result in an increase in errors of omission among
the smaller classes while not necessarily reducing errors of commission
within these classes to the same degree. To illustrate this point, notice
that the 5-class, NOFILT User's Accuracy values range from 50% to 70%,
whereas the Producer's Accuracy values range from 24% to 74%. This
two-sided increase in Producer's Accuracy range compared to User's Ac-
curacy range is seen across all three filtering levels and all three classi-
fication schemes, even in the 2-class results where there is less
imbalance between the sample sizes (Tables 5-7).

In the 5-class design, the Soy-Cotton class had the lowest
Producer's Accuracy value regardless of filtering level, ranging from
24% (NOFILT) to 43% (80/20). This class also had the lowest or nearly
the lowest User's Accuracy values, ranging from 52% (NOFILT) to 76%
(80/20). Absorbing this class into Soy-Com (the 4-class design)
caused a slight deterioration (3%-4%) in Producer's Accuracy for the
Soy-Com class at all three filtering levels, while User's Accuracy values
increased (73% to 76% for 85/15) or were nearly unchanged (4 1% for
NOFILT and 80/20).

Among the other pairwise class comparisons, substantial confusion
between Soy-Cov and Pasture was seen across all 5- and 4-class scenar-
ios. This outcome is similar to confusion observed between single crop
soybeans and pasture noted in Morton et al. (2006), which prompted
those authors to implement a crop trajectory correction scheme to

mitigate the problem. In our analysis, filtering helped to generally im-
prove User's Accuracy for the Pasture class, but Producer's Accuracy
did not improve from the NOFILT case except in the 4-class 80/20
evaluation.

Because the two largest classes (Soy-Com and Soy-Cov) comprise
at least 90% of the testing samples in all of the considered filtering
scenarios, it is important to examine the effects of filtering on these
classes. In the 5-class design, User's and Producer's Accuracy values
improve 9%-11% comparing NOFILT to 80/20, attaining at least 79%
for Soy-Com and Soy-Cov under 80/20 filtering. Corresponding gains
are similar in the 4-class design, with the exception that Producer's
Accuracy for Soy-Com increases just 5%. However, the final 80/20
value in this regard is 84%, which is a generally favorable result none
the less. In the 2-class design, User's and Producer's Accuracies improve
5%-7% when comparing NOFILT to 80,20, with all four 80/20 values in
the range of 81% to 87%.

4.2. Estimating model accuracy

Three distinct accuracy assessments (CVYR, CV20, and INSAMP)
were applied to the DT models for the different filtering levels and clas-
sification scenarios. Results are shown in Table 8. Difference values be-
tween error estimates are shown in the bottom three rows of the table.
Despite efforts to reduce model overfit of the training data by using a 1%
CF, there is still a substantial effect in this regard that is evident in
all cases considered. In the 4- and 5-classs scenarios, INSAMP exceeds
CVYR by 12.9-18.9% under the different filtering conditions. INSAMP
achieves a maximum value of 98.1% overall accuracy in the 4-class
design using 80/20 filtering, compared to 80.9% using the CVYR evalua-
tion method. The smallest difference (6.4%) between INSAMP and CVYR
is observed in the 2-class NOFILT scenario, though this value increases
to more than 12% when filtering is applied. The average difference
between INSAMP and CVYR across all nine cases is 14.2%.

The expected bias of CV20 compared to CVYR is evident as well.
The maximum observed differences are 4.3% (4-class NOFILT) and
3.9% (5-class NOFILT), whereas three of the nine scenarios were found
to differ by less than 1% (2-class 80/20 at 0.8%, 2-class NOFILT at 0.6%,
and 5-class 80/20 at 0.5%). The average difference between CV20 and
CVYR across all nine cases is 2.2%. Comparing these difference values
to ‘std(CV20)’, in four of the nine cases we find that CVYR values are
within a standard deviation band of observed CV20 values. Looking at
the minimum observed CV20 value across the 30 trials, this value falls
below CVYR in seven of the nine cases. Alternatively, if we compute
the standard error about the mean (‘stder(CV20)’), we find that CVYR
falls below this confidence band in all nine cases and in six of nine
cases if we use a band twice this wide, indicative of statistical distinction
between CV20 and CVYR and therefore bias of CV20 with respect to
out-year classification.

Table 8
Model error estimates. ‘std’ denotes the standard deviation, and ‘stder’ denotes the standard error about the mean.
5-class 4-class 2-class

Statistic NOFILT 85/15 80/20 NOFILT 85/15 80/20 NOFILT 85/15 80/20
min(CV20) 69.7 72.9 76.8 72.7 75.9 78.9 75.4 79.7 81.0
max(CV20) 77.5 80.0 83.0 79.4 844 86.4 825 86.9 90.1
avg(CV20) 72.5 76.8 79.8 75.7 79.4 82.7 79.5 82.6 85.1
std(CV20) 1.7 2.0 1.7 19 2.2 1.8 1.7 1.6 2.0
stder(CV20) 03 0.4 0.3 04 0.4 0.3 03 0.3 0.4
CVYR 68.6 733 79.3 714 77.5 80.9 78.8 80.2 84.3
INSAMP 86.5 86.2 953 90.3 91.7 98.1 85.2 923 96.9
INSAMP-CVYR 179 129 16.0 189 14.2 17.2 6.4 121 12.6
INSAMP-CV20 14.0 94 15.5 14.6 123 154 5.7 9.8 11.8
CV20-CVYR 39 35 0.5 43 2.0 19 0.6 2.4 0.8
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4.3. Yearly results

Using a yearly hold-out method like CVYR allows us to examine
variability in year-to-year performance of the DT models. Annual re-
sults for the different classification designs and filtering levels are
shown in Table 9. The first thing to notice is the steady improvement
of model performance across time, which is evident from the bottom
row of values in the table. Averaged across all designs and filtering
levels, year-on-year improvement ranges from 1.5%-2.5%. A conve-
nient explanation for this occurrence is the recency effect observed
earlier in the annual filtered sample dropout numbers, which sug-
gests that the accuracy of the ground reference data degrades as
one goes backward in time, due to limitations of farmer records and
recollections. Likely some of these differences are also attributable
to annual variations in growing season characteristics caused by
weather. [As noted earlier, 2005 saw the greatest drop out of data
with the filtering approach employed. It was the earliest year of the
study, but it was also a year considered to suffer the most severe
drought in the last 40 years (Hopkin, 2005), during which EVI green-
up appeared noticeably affected (Samanta et al., 2010). This drought's
effect on crops in 2005 is likely reflected in the MODIS data, as demon-
strated by Asner and Alencar (2010)]. Another observation that can be
gleaned from the ‘StdDev’ column in Table 9 is that data filtering
reduces year-to-year variability in model performance, in addition to
increasing overall accuracy.

4.4. Tree size and band usage

Through the error comparisons described earlier, we presented
evidence that the constructed DT models overfit the training data to
some degree despite efforts to mitigate this problem through our
choice of a minimal CF value. Overfitting is often the consequence of
a model having too many parameters relative to the number of data
points (i.e., the model is overly complex). In DT modeling, each split
is equivalent to a model parameter, so the total number of splits can
be used as a measure of DT complexity.

Table 10 shows the year-by-year average tree sizes observed dur-
ing the CVYR exercise. For the 5-class and 4-class designs, each one-
year hold-out model was constructed using approximately 1500 train-
ing samples for NOFILT, 1300 samples for 85/15, and 1050 samples
for 80/20. For the 2-class problem, these numbers drop to 1350, 1100,
and 950, respectively. Average tree sizes, on the other hand, range
from 7 splits (2-class NOFILT in 2005) to 98 splits (5-class NOFILT in
2005). The 5-class NOFILT scenario clearly was exceptional in that the
five largest average tree size values occurred here. Of the remaining
5-class and 4-class cases, annual average tree size ranged from 19 to
36, and the median average tree size across all five years was fairly sta-
ble (28-32). Tree size dropped substantially with the 2-class cases,
where annual average tree size ranged from 7 to 23, and the median
average tree size across all five years was 12 (NOFILT, 80/20) and 16

Table 9
Year-by-year CVYR overall accuracy values.
Data 2005 2006 2007 2008 2009 Average StdDev
5-class  NOFILT 602 660 714 724 728 686 5.4
85/15 690 719 713 760 774 731 3.5
80/20 757 765 772 817 840 79.0 3.6
4-class NOFILT 662 69.1 731 716 770 714 41
85/15 739 755 764 788 823 774 33
80/20 794 785 765 849 840 807 3.6
2-class NOFILT 710 784 796 820 830 788 4.7
85/15 785 782 803 803 834 802 2.1
80/20 804 824 843 864 868 841 2.7

Average 727 752 767 793 812 - -

Table 10
Hold-out year tree size (number of splits, averaged across 10 boosted DTs).
Data 2005 2006 2007 2008 2009 Median
5-class NOFILT 98 89 40 48 51 51
85/15 26 29 30 32 30 30
80/20 29 24 31 36 21 29
4-class NOFILT 32 34 28 23 19 28
85/15 29 32 20 34 33 32
80/20 33 30 23 29 23 29
2-class NOFILT 7 12 12 14 14 12
85/15 15 22 22 15 16 16
80/20 23 12 17 12 12 12
Median 29 29 23 29 21 -

(85/15). These smaller tree sizes suggest that the 2-class models were
more parsimonious, which helps explain why the smallest bias values
at each of the three filtering levels were observed with the 2-class
models (Table 8; INSAMP-CVYR). However, this outcome is also partly
attributable to the generally higher CVYR accuracies observed with
the 2-class design, which limits the possible bias magnitude.

Table 11 shows band usage frequency, by classification design and
filtering level. If a band (MODIS time period) appeared at least once in
any of the 10 component trees of the boosted DT model, then it was
deemed to be used. From Table 11, it is clear that band usage was fair-
ly consistent and logical across all modeling scenarios. Specifically, we
see information from the soy cropping time periods (roughly 6-14)
and information from the peak of the second commercial, cover, or
weed crop (roughly 17-19) used with the most frequency. On the
other hand, information from the off-season (roughly 1-5, 20-23)
was used with the least frequency.

5. Conclusion

This research was made possible due to the 5-year ground reference
data set collected by the authors (Coutinho and Victoria), which is
unprecedented in spatiotemporal magnitude. With approximately
120,000 ha of agricultural land situated in the most densely cropped
areas of Mato Grosso represented each year, these data provide an
excellent means for developing and evaluating land-cover classifica-
tion models as well as estimating potential accuracies that might be
achieved under various agricultural classification designs. However,
the field sites are concentrated in particular portions of Mato Grosso,
and thus one can expect some drop-off in accuracy if applying a
model constructed using these data to a larger area (such as the entire
state). Likewise, one can also expect some accuracy decline if applying
such a model to data from years not represented in the dataset.

The field dataset originally comprised 19 vegetative land-cover clas-
ses, most of which related to agriculture. A simple sample-size threshold
was applied to remove poorly represented classes, and the smallest
remaining class following threshold application (rice) was also removed

Table 11
Band usage by classification design and filter level.

Data High usage (100%) Low usage (<75%)
5-class NOFILT 9-14, 17-19 1-5, 20-22

85/15 11-14,17-19 1-5,7,20-22

80/20 10-14, 17-19 1-5,7,20-23
4-class NOFILT 6-14,17-18 2-5,20-22

85/15 6-14,17-19 2-5,20-22

80/20 8-14,17-18 2-4,7,20-22
2-class NOFILT 8-14,17-18 2-5,20-22

85/15 6-14,17-19 2-5,20-23

80/20 9-14,17-19 2-5,7,20-22
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due to high VI statistical variability attributable to widely variable man-
agement of that crop. The 11 classes that remained generally can be cat-
egorized as pasture, single crop, single crop followed by cover crop, and
double crop. The crop types and rotations represented in these 11 classes
are fairly comprehensive for the region, accounting for 91.5% of the agri-
cultural planted area found in Mato Grosso during the study period
(IBGE, 2011).

Ideally, one would like to be able to discern as many of these spe-
cific classes as possible, so that reliable, maximally detailed land cover
maps can be developed for use in land change, agro-environmental
monitoring, and climate studies. Spectral similarity between VI time
series from some of the classes precluded full separation, so that it
became necessary to group particular classes to form super-classes.
Specifically, we developed and evaluated two major groupings, which
include soy followed by a commercial crop (Soy-Com) and soy followed
by a cover crop or fallow (Soy-Cov). These groupings have economic and
agronomic relevance, and thus represent an evolution of past single- and
double-crop groupings such as those used in Galford et al. (2008) and
Brown et al. (2007a). These super-classes potentially could be used in a
hierarchical classification scheme as researchers pursue the future chal-
lenge of more specific crop-type mapping.

Several different variations of the MODIS NDVI and EVI datasets
were subjected to parallel analyses in an attempt to identify an opti-
mal dataset to use for the classification of the field data. On average
across multiple class groupings (5-, 4-, 2-class), VI data treatments
(RAW, DOA, SM-DOA), and field data point screening stringencies
(NOFILT, 85/15, 80/20), NDVI with date-of-acquisition interpolation
and no smoothing was found to be the best-performing data. This
result is desirable because NDVI is a simpler index than EVI, and it
also illustrates the value of utilizing the MODIS date-of-acquisition
information to make the VI time series more temporally precise.

At best, some early land cover change studies for Mato Grosso eval-
uated classification accuracy using testing data from a different year
than the model training data (e.g. Galford et al., 2008; Morton et al.,
2006). However, none of these studies performed the type of rigorous,
multi-year evaluation presented here, which makes it difficult to
apply the results of those earlier studies for multiyear analyses. We test-
ed multiyear applicability under nine distinct classification designs, and
across 5 years of evaluations; we found maximum differences in annual
accuracy that ranged from 6.4% (2-class, 80/20) to 12.6% (5-class,
NOFILT), thus indicating the importance of multiyear studies for robust-
ness of analysis.

By design, our results tend toward best-case expectations, giving
some idea of potential accuracies that might be achieved in a regional-
scale agricultural mapping program centered on Mato Grosso and neigh-
boring areas. Only with 80/20 sample filtering do we realize 5-year
out-of-sample accuracies consistently near or above 80% and Kappa
values above 0.60. It should be noted that sample filtering was per-
formed using all 5 years of data at once (i.e., not in a CVYR framework),
likely imparting a small favorable bias to the 85/15 and 80/20 results.
Our choice to use boosted decision tree models is supported in the liter-
ature; the observed tree sizes were reasonable and the most-used vari-
ables were logical. Alternative methods such as random forests (Clark et
al., 2010), however, might produce better results. Further examination
toward this end is warranted, though our expectations for realizing
substantial improvement are tempered.

Our field data spatially and temporally have unprecedented cover-
age compared to previous agricultural mapping efforts in Mato Grosso.
Nonetheless, the dataset has limitations that should be recognized,
especially if used in an operational agricultural monitoring program
over a larger area. First, the data are concentrated in central and west-
central Mato Grosso. The VI data from these sites do not exhibit great
variation in growing season timing, though we know this situation
changes dramatically as one moves away from the area. For example,
soybean planting 1000 km to the north near Santarém, Para, occurs
approximately 80 days later than planting in our study area (Brown et

al., 2007b; Rudorff et al.,, 2011). Wider area studies are needed, and
they must take crop calendar variations into consideration. Second,
field data collection was facilitated immensely by established contacts
with APROSOJA (Soy Producers Association) in Mato Grosso, who were
extremely helpful in locating research participants. This also meant, how-
ever, that most farmers interviewed were soy producers. The dataset thus
possibly over-represents soy cropping systems and under-represents
other important non-soy cropping strategies such as single- or double-
crop cotton, where the accompanying crop is something other than soy.
Third, data collection did not take into account what varieties of soy,
corn, or cotton were grown (e.g. fast maturing vs. slow maturing). Recent
field work in Mato Grosso by author Coutinho has left the impression that
there is substantial variability in planting and maturing times in these
crops within the same general area. This variability is the byproduct
of factors such as seed availability, market conditions, soil (seed bed)
characteristics, and weather, all of which influence individual farm man-
agement decisions. Variations in these decisions likely contribute to the
variability observed in the MODIS data and the difficulty in reaching
higher classification accuracies. Fourth, it bears repeating that the accu-
racies obtained are best-case scenarios based on “pure” pixels that are
hand-selected from field interiors. Accuracies, thus, are likely to be
lower when trying to classify datasets that include mixed pixels.

The MAPAGRI Project, underway as of this writing, will address
the field data limitations noted above, and it builds on the work
presented here. MAPAGRI is a 3-year effort that began in 2011, led
by the Brazilian Agricultural Research Enterprise (EMBRAPA) in col-
laboration with Brazil's National Space Institute (INPE) and numerous
university-based satellite remote sensing labs across the country, to
standardize methodology, data-sharing, and visualization protocols
for the launching of an eventual national agricultural mapping system
(Esquerdo, 2011). With additional and ongoing farmer involvement
through programs like MAPAGR]I, the recency effect that we observed
during filter evaluation can be eliminated with the development and
maintenance of a current, accurate, long-term record of field site data.
Such a historical archive will be invaluable for reference as satellite
time series and associated agricultural land use analyses are extended
to decadal scales in the future. Crop types and management practices
will no doubt continue to change, with changes in the global agricul-
tural system, further highlighting the need for ongoing monitoring
and ground data collection to keep up with Mato Grosso's rapidly chang-
ing agricultural landscape.

At the time of this writing, the authors were in the process of de-
veloping a time series of statewide land cover maps for Mato Grosso
covering the 2001-2012 crop years that utilizes the ground reference
dataset featured in this study along with other datasets. These maps
will be used to examine land cover change dynamics across the state
with a focus on agricultural intensification. Upon publication of those
results, both the ground reference dataset and the map series will be
made available to the public.
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